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ABSTR&Q?

This report presents and compares methods for computing the
gravity vector outside the earth. The gravity vector is conveniently
split up into a normal part, the vector of normal gravity, and an
anomalous part, the vector of gravity disturbance.

Part I gives the theoretical foundations and a practical method ,,
for the computation of the vectors of normal gravity and gravitation.
The method is adepted for electronic computation. It is illustrated
by & numerical example. =

Then the formulas for the computation of the gravity disturbance
vector from free-air gravity anomalies Ag at the surface of the earth
are developed, (a) for the direct method, which uses Ag only, and

(b) for the coating method, which requires Ag and the geoid heights N
but involves simpler formulas.

The components of the gravity vector are first computed in a local
coordinate system and then transformed to the geocentric world system
by a spatial rotation. If the gravity vector is required along a rocket
trajectory, then also the components along and normal to the trajectory
can be computed by a spatial rotation.

Part II is concerned with accuracy studies, in order to determine
the best practical procedure for the computation of the gravity disturbances.

The standard errors of the components of the gravity disturbances,
due to the interpolation of the gravity material, are, approximately, N
inversely proportional to the elevation and very small for high altitudes,
provided there is uniform coverage by gravity stations.

The influence of the distant zones is considered in scme detail.
This influence decreases very slowly beyond a certain radius, so that it
is imprac®ical to go farther than about 30° in the direct method and 20°
in the coating method (with an error of about 5 mgal in both cases),

unless the integration is extended over the whole earth, which is necessary
for higher accuracy.

There is another method, for which the influence of the distant
zones is completely negligible and which furthermore is the simplest.
the upward continuation of the surface disturbances. If presupposes,




however, the deflections of the vertical &€ and T for the horizontal
components, and Ag and N for the vertical component.

For practical use the following methods are proposed: if only
Ag 1ies given, the direct method; if Ag and N are given, the
coating method for the horizontal components and the upward continuation

for the vertical component; if Ag , & , TN are given, the upward
continuation for all three components.

Finally, a detailed practical computation procedure is described
for the practically most important case that Ag and N are given.

IT
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PART T

by

R. A. Hirvonen

INTRODUCTION

The purpose of this report is to develop a method of computaticn
of the gravity vector for a great number of points at high altitudes,
e.g. for trajectories of moving bodies, when the geocentric coordinates
are given, Formulas will be summarized in a form suitable for auto-
matic high speed computers. Numerical examples illustrate the method.

First, the components of the normal gravitation (attraction of a
reference ellipsoid) will be computed. Those of the normal gravity
can then be obtained by subtraction of the components of the centri-
fugal force. Finally, the deviations of the actual components from
these normal values will be evaluated on the basis of the free air
anomalies of the gravity observed on the physical surface of the carth,
The accuracy of tie method is studied in Part II.

The method is based on the formulas first published in [Hirvonen,

1959], but several practical improvements have been introduced.

1. CONVERSION OF THE COORDINATES

It is supposed that the Cartesian geocentric coordinates x,y,z




are given for each point P at which the gravity will be computed,
The z-axis is the axis of the earth's rotation, the x-axis has the
longitude 0° (Greenwich) and the y-axis has the longitude 90°E. These
coordinates must be converted into three other systems.

I. Geocentric coordinates, defined by

X =1 cos Y cos A
(1) y =1 cos ¥ sin A
z =1 sin ¥
and called
r = radius vector
Y = geocentric latitude
A = geographic longitude

When x,y,z are given, r,¥,\ can easily be computed:

(1.1) p® =x% +y®

(1.2) r® = p® + 2°
(1.3) cos A = z

1Y
(L.4) sin A = L

1Y
(1.5) cos ¥ -2

r
(1L.6) sin ¥ = z

r

For the computation of the normal gravitation, we shall use the

functicon




2 Zz

(1.7) F=cos2 ¥ - 2—§5——

IT. Geographic coordinates, defined by

p = (N + H) cos ®
(I1)
z = (N+ H- e°N) sin ¢
a
(1.8) N = -

(1.9) WP=1 - e® sin® o

2. a3;b2
a
and called
@ = geographic latitude
H = geographic height

The geographic coordinates refer to a reference ellipsoid with equa-
torial radius a and polar radius b , and they are used for the
computation of triangulations, in spite of the fact that the "orienta-
tion" of the ellipsoid (or the "data" of the triangulation system) can—
not be determined without world-wide geodetic operations. The names
suggested here are, however, nqt yet in a general use.

The normal gravitation is the attraction of the reference ellip-
soid which is supposed to have the same mass as the actual earth. The

masses inside the rotating ellipsoid are supposed to be distributed




in such a way that the combined potential of the attraction and of
the centrifugal force is constant at the outer surface and very close
to the actual potential of the gravity at the mean sea level.

At higher altitudes, the geographic coordinates are less practical
for the exact computation of the geodetic quantities. Especially,
we cannot use them for the computation of the normal gravity. However,
we should use them for the evaluation of the deviations of the actual
gravity from the normal gravity on the basis of the anomalies observed

on the ground.

The computation of ¢ and H from x,y,z is rather complicated.

First, we obtain

(1.10) H=—2—_ ¥
cos

(1.11) H = —— - W + 2N
sin ¢

The difference of these equations gives

N
(1.12) tan © = 24+ e2 = sin P
p p

This equation will be solved with respect to ¢ by successive approxi-

mations., The first approximation is usually obtained by H = O in which

case we have

(1.13) tan ¢y = =




For the higher altitudes, it is slightly better to start from

H=e® N« 43 kn, in which case we obtain

(1.14) tan @, = (1 + e2) %

The latter case will be used in our present applications.

Any approximate value tan ¢, can be improved as follows. Compute

£ 2
(1.15) sin® ¢, = ———d—

T 1+tan®e,

and W; by the aid of the value thus obtained. Then we have a second

gpproximation

(1.16) W® =1 - &® sin® ¢
sin

(1.17) & = e®a
pW,

(1.18) tan ¢ = tan ¥ + &
If this new approximation is improved in the same way, the change

is already much smaller and it can be estimated rcughly:

cosaw

(1.19) tan ¢, - tan @ =5 - ;gzazk (tan 0y - tan o)

In the numerical example given in chapter L we have H = 129, Even
in this extreme case the error of ¢z is 0",0002 only. That of g
is 0",035 and that of ¢, is 9".

In our present problem, we shall use ¢ only for the computation
of the disturbances of gravity. Therefore, we may think that the

first approximation ¢, already is quite sufficient for this partic-




ular purpose. However, we have included the computation of the correct
value into our program becausé it may be useful for other purposes.
Note that ¢ 1is not the direction of the normal gravity at the
elevated point P Dbut the direction cof the normal of the reference
ellipsoid. The former direction can be computed only when the compo-

nents of the normal gravity are known:

(1.20) tan o" = %2

63

We shall call ¢" the geodetic latitude, bearing in mind the definition:

€ - component of the deflection of the vertical is the difference of

the astronomical latitude ¢' and geodetic latitude ¢" at the

elevated point P .

The difference o"- ¢ is caused by the curvature of the normal
plumb line. In [Hirvonen, 1960], a series is given for the computation
of Qp"- C‘P

o" - © = sin 2 ¢ (0",170293 H
(1.21) + 0 ,001103 Hcos 2 ¢

+ 0 .000034 H®)
(H in kilometers). In the present problem, however, we cannot use

this formula for the computation of ¢ because H still is unknown.

Therefore, we have to compute ¢ by successive approximations as



described above. When the final approximation has been found, H can
be obtained from (1.10).
For latitudes higher than 45°, our program should be based on an

alternative set of formulas. Instead of (1.14) through (1.19), compute

D
. t = —7sy
(1.22) cot ¢ Z(1re?)
2
2 __cot
(1.23) cos® o = o
2
(1.2k) cot ¢ = 2_22 208 ot v-3
zZ Wl Z

in2
cot @ = & * S8 (cot go- cot o)

(1.25) cot o3 vy

With the final approximation of o, compute H from (1.11).

ITI. Elliptic coordinates, defined by

P: - COSB
sine

ITT zZ = sin

( ) tan € P
cC =€ &

and called
€ = angular eccentricity
B = reduced latitude

At the surface of the reference ellipsoid, e has a constant value




€ with
o
(1.26) sine =c¢e
o}
When p and 2z are given, we could compute ¢ and B by

rigorous formulas

(1.27) k® = r® 4+ 2

(1.28) h* = x* - 4p® c?

k2-n®
1.2 in® ¢ =
( 9) 5 2pa
2p2
2
(1.30) cos® B = Ny

For practical computations, however, we shall use power series,

By the aid of

2
(1.31) #® = lf—g

we can replace the formulas above by
(1.32) k2 = r3(1 + #®)
(1.33) n* = r*(1 - 2#® cos 2¥ + u*)

(1.34) sin® ¢ = ®[1 - #® sin® ¥

- n* sin® Y cos 2 ¥

6 -

2 v .5_ W .];
- #° sin~ VY (h cos 2 ¥ - h)]

= cos® ¥ [1 - u® sin® ¥

(1.35) cos®

oW
[

- u* sin® Y cos 2 V]




Using the abbreviating symbol
(1,7) F=cos 2V

we obtain, after lengthy but easy computations,

€ = H + L %3 (3F - 1)

12
(1.36) + < n5(35F3 - 10F - 13)
’ 160
1 7 3 3 19
+ o5 (33F° - OF° - 21F + - )

2. THE POTENTTIAL OF NORMAL GRAVITATION
The Newtonian attraction of the reference ellipsoid is called the

normal gravitation of the earth., The potential of this attraction can

be expressed in a closed forms

(2.1) Vv

1
I

™

+

where

f : gravitational constant,
M : mass of the earth,

w : rotation speed of the earth.

The auxiliar variable

(2.2) gq = % [e = 3cote (1 -¢cote)l

is a function of € only. At the surface of the reference ellipsoid

g has a constant value g .
o}



The closed formula (2.2) of q is not suitable for practical

computations. but must be replaced by power series:

2 3 b 5., T
(2.3) q= = tan” ¢ - > tan” ¢ + tan' e - . . .

21
or
2 3 3 5 5 sin7 c+
(2.4) q == sgin” ¢ + = sin’ ¢ + = c e

T 15 35 8k
Therefore, it is only logical that we use power series throughout for

our computations. By the aid of (1.34), (2.4) gives

2 3.1 5 N S .29
(2.5) a=Tn + g% (F-7)+560 (63F'-10F-3)

Now we have to insert (1.35), (1.36) and (2.5) into (2.1). Using

another abbreviating symbol for the constant

2 «’a®c
.6 == -
(2.6) ¢ 15 g

we can write the result in form

M 1l 2 1
V= - )({l A (L - C)(F - 3)
=< L 2 13
(2.7) +5op (T - 100)(7F%- 2F - )
L 6 2 19
+ T8 " (3 - 5C)(11F°- 3F®- 7F + —21)}

3. THE COMPONENTS OF NORMAL GRAVITY
Differentiation of (2.7) and (1.31) with respect to r gives
the component of the normal gravitation toward the center of the earth:

10




L _me2 1 o2
F=-3p=o3%* L+pn (1-0)3F-1)

1
(3.1) > * (7 -10C)(35F2 - 10F - 13)

+ EJS_I K6 (3 - 5C)(231F3 - 63F2 - ll{_'?F + 19)}

Differentiation of (2.7) and (1.7) with respect to ¥ and

division by r give the component perpendicular to Fr:

Loy

Ty = T Y =5 u* sin Ycos ¥ {1 - C
1
(3.2) + 35 w2 (7 - 10C)(7F - 1)
1
¢ 5 n* (3 - 5C)(33F° - 6F - 7)}

In order to facilitate the numerical computations, we replace

the increasing powers of »° by those of

™
r@

(3.3) G =

using convenient units. In other words, we insert:

21%

(3.’4) Ka =G .

For the international ellipsoid with the international normal formula

of gravity we obtain, when r 1s expressed in kilometers and T 1in
=2
gal = cm sec

(3.5) o _ 3986 3290.45
]

r

11




r_ = 1000 G
- 0,835 888 G2
+ 2,507 664 G® cos 2¥
- 0,005 118 G®
- 0.003 937 G® cos 2Y

(3.6) + 0.013 778 G°

cos® oY
+ 0.000 007 G*

- 0,000 054 G* cos 2Y
- 0,000 023 G* cos® 2¥

3
+ 0,000 085 G* cos oV

T, = sin ¥ cos ¥ {3,343 551 G®

Y
- 0.0C3 149 G®
(3.7) + 0,022 045 G® cos 2¥
- 0,000 031 G*
- 0.000 026 G* cos 2¥
+ 0.000 145 G* cos® 2Y¥}

As G 1is always slightly smaller than 1, it 1s easy to see
that the accuracy of one milligal can be obtained without the terms
with G*,

The components of gravitation in directions of the Cartesiun
coordinate axes are here chosen to be positive towards the origin.

They can be computed by formulas

1t

(3.8) D

I' cos ¥-T sinV
r ¥

(3.9) r I' cos A
X p

12



1]

(3.10) T I' sin A
y P

(3.11) T, Fr sin ¥ + T, cos ¥

Y

The components of the normal gravity are obtained by subtraction

of those of the centrifugal force:

12 =T - o
(3.12) %= P
(3.13) v =T - o’x
X X
J1h =T -
(3.14) V=T, -y
(3.15)° v, =T,

The total gravitation is

(3.16) T = rr + FY

and the total gravity

(3.17) ¥ = /7§=+'sz

The direction of the former is

(3.18) & = arc tan %P

D

that of the latter was given in (1.20).

4, SUMMARY OF FORMULAS FOR NORMAL GRAVITY
The formulas given above will be summarized here in form of a
program for automatic computers., First, the constants are listed which
pertain to the international ellipsoid and to the internatiomnal normal

13



formula of gravity. Then the computations are described in detaii,

using a numerical example as illustration.

Input Constants

(1) 1,0000 000C

(2) e® = 0.0067 2267

(3) 1+e2 = 1,0067 2267

(&) a =  6378,3880

(5) e®a - 42,8798

(6) fM = 3986 3290

(1) 1000,0000

(8) 0,83589

(9) 2,50766
(10) 0.00512
(11) 0,0039%4

(12) 0,01378

(13) 3, 34355

(14) 0,00315

(15) 0.0220k4

(16) w* = 0.000 531 T49
Input Variables Example
(17) Identification number of P e
(18) X 51,0517
(19) y 4957.4762
(20) z 4169.1994

14



Program of Computations -

(21) p? (18) - (18) + (19) - (19) oh8h 8065
(22) 22 (20) - (20) 1738 2224
(23) r? (21) + (22) 4223 0289
(24) cos 2¥ [(21) - (22)] + (23) 0.1767 8877
(25) P /(1) 498, 7833
(26) I /(23) 6498,4836
(27) cos ¥ (25) + (26) 0.7670 6869
(28) sin ¥ (20) + (26) 0.6415 6496
(29) tan ¥ (20) + (25) 0.8363 8528
(30) cos A (18) + (25) 0.1045 2846
(31) sin A (19) + (25) 0,9945 2191
(32) cot A (18) + (19) 0,1051 0k23
(33) cosY cos) (27) - (30) 0.0802

(34) sinY¥ coshk (28) -+ (30) 0.0670

(35) cosY sink (27) - (31) 0.7629

(36) sin¥ sinA (28) . (31) 0.6381

(37) A arc cot (32) ~ 84°00! 2000
(38) tan o, (3) * (29) 0.8420 0802
(39) tan® ¢ (38) - (38) 0.7089 7751
(ko) sin® ¢ (39) + [(1) + (39)] 0.4148 5479
(41) w? (1) - (2) « (40) 0.9972 1107
(42) sin o /(40) 0.64L40 9222
(43) W sb1) 0.9986 0456
(bk) (5) « (k2) + (25) 0.0055 L4057
(45) ® (44) + (43) 0.0055 4831

15



(46)
(7))
J (18)
(49)
(50)
(51)

(52)

(53)
(54)
(55)
(56)
(57)
(58)
(59)
(60)
(61)
(62)
(63)
(k)
(65)
(66)
(67)
(68)
(69)
(70)

tan @2

tan ©
tan® o
sec @
cos @

sin @

GSF

G3p2

(29) + (45)
(38) - (L46)

(38) - [(1) + (39)]

(b7) « (45) + (48)

(u6) - (49)
(50) - (50)
S + 51)
(1) + (52)
(50) - (53)
arc tan (50)
(25) - (52)
(&) + (43)
(56) - (57)
(6) + (23)
(59) * (59)
(60) - (2k)
(60) - (59)
(62) - (2k)
(63) - (2k)
(7) + (59)
(8) + (60)
(9) -+ (61)
(10) - (62)
(11) - (63)
(12) - (6k)

16

0.8419 3359
0.0000 Thk3
1.4390
0.0000 0029
0.8419 3330
0.7088 5168
1.3072 3054
0.7649 7601
0.6440 5878
40°05'.7085
6516.2610
6387.3011
128.96
0.9439 5022
0.8910 L2
0.1575 26
0.8k11
0.1487
0.0263
943,950 22
0.74k 81
0.395 02
0.004 31
C.000 59
0.000 36




Input Variables Example
(72) r. (65)-(66)+(67)-(68)-(69)+(70) 943.595 90
(72) (13) - (60) 2.979 2k
(73) (1) - (62) 0.002 65
(74) (15) - (63) 0.003 28
(75) (72) = (73) + (74) 2,979 87
(76) Ty (75) - (27) - (28) 1.466 47
(77) T, (11) = (27) - (76) - (28) 722,862 Ok
(78) r=7, (1) - (28) + (76) * (27) 606,502 95
(79) T, (77) - (30) 75.559 66
(80) T, (17) - (31) - 718,902 14
(81) Yy (17) - (16) - (25) 720,211 39
(82) Y, (79) - (16) - (18) 75.282 59
(83) Y, (80) - (16) - (19) 716.266 01
(84) tan % (18) = (77) 0.8390 3002
(85) tan " (78) + (81) 0.8421 1796
(86) s (71) » (71) + (76) - (76) 890375.37
(87) Y (78) « (78) + (81) - (81) 886550.27
(88) r /(86) 943.5970k
(89) y J/(87) 941 .56799
(90) 3 arc tan (84) 39°591.8596
(91) ¢" arc tan (85) Loc06' 0800
Output

(17), (55), (37), (58), (53), (79), (80), (78) in full

(33), (34), (31), (35), (36), (30), (28), (27) four digit values

17



5. GRAVITY DISTURBANCES

If the free air anomalies [&g are known everywhere on the physical
surface S of the earth, the potential disturbance T at any point
on or above S can be computed. The computation is very complicated,
especially if the point is very close to high and steep mountains. In
most cases, however, the generalized formula of Stokes gives a sufficilent
approximation.

We shall use following notations:

P

fixed point at which T 1is wanted;

M : '"moving" point at S ;

r : distance from the centtre of the earth;

e

angle between radii rP and rM

a = azimuth from P to M ;

T
(5.1) t=74;
P
(5.2) D2 =1 - 2t cos y + t=;
(5.3) do = sin y d¥ d@ = cos @ do d)

is the element of solid angle, situated at point M .

The generalized formula of Stokes reads

D+l-t cos Y

5 )ldo

2 op 2 2,
(5.) T, =7 [ Ag, t? (5+1-3D- tcosy (5+3n

18




The integration must be carried out over the entire surface S . To a
very good approximation,
o r =r_-H
(5.5) 1, =7y
where H 1is the height of P above S . Usually, 'y can even be
replaced by a constant R , the mean radius of the earth.
Especially, if H= 0 or t = 1, we have
Y
(5.6) D=2 sin—
2
and

T
(5.7) TS=ETS- IAgM{cosec§+l-6 sin-z-

-cosy[5+3 4n (sin-g-+ sin® %)]}do

The quantity

T
5-8) = —
( C=7
is called the height anomaly and
T
S
(5.9) ¢g=7"
Ys

is approximately the elevation of the geoid above the reference ellipsoid.
Because QS is one of the most important quantities of geodesy, we

may often assume that the values of it have already been computed.

Then we can compute the "coating" function of Helmert:

(5.10) W= Ag+§ —E—S'

2
S

19




This function has the advantage that the long formula (5.4) for the

computation of T at higher altitudes can be replaced by a shorter one:

2
(5.11) T =r—.ﬂ§— LR

In our present problem, we have to compute the components of the

gravity disturbance:

JT
(5.12) sn =- 3
cos @ QT
(5.13) 8 = -2 ¢
sin @ éT
(5.14) 5, = - = o

If we take T from the long formula (5.4), the result can be

written in form

(5.15) &_-= é—n [Ae Fy ao

(5.16) & =2= [Ag Fs cos a do
(5.17) 8, = %;erg Fp sin & 4o
where

(5.18) F, = % t2 {lggf + % +1 - 6D

D+l-t b4
-t cos Y (13 + 64n ————E—EQE——)}

43 sy 1 3 _
(5-19) Fy = t7 sin ¥ {Bg + = L

3 ,D-14t cos VY D+l-t cos Y
2 (== 2 L g ———
+ 2 Sy > )}
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If we use the short formula (5.11), we obtain

1
(5.20) 5n=-2—ﬂjuf1dc
(5.21) & === [ 4 £, cos ad
. n = on b f5 cos o]
(5.22) & l—f fs sin a 4
. Pl b fz sin o]
where

ta
(5.23) f1=']§(l-tcos ¥)

t
(5.2“4—) fg = '5— sin Y

Table 5.1 shows some values of ¥, and f;, Table 5.2 those of Fy
and fg. We see that for small values of Y , the functions F and T

are almost equal.

In practical computations, we must first find the values of ¥

and O ., If the earth is considered as a sphere, we have

. v _ . . _
(5.25) cos sin @, sin @ + cos @, cos @ cos (kM KP)

It

(5.26) sin ¥ cos o = cos 5 sin Py - sin P, cos ¢ cos (KMf kP)

(5.27)- sin ¥ sin o = cos Py sin (KM- kP)

For small values of ¥ , we can use tHe approximate formulas:

(5.28) m=q - @
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(5.29) 4

(AMf kP) cos @,

I S - T
(5.30) n=g+35 @ +2°7)
(5.31) A% = n® +m® + 4®

(5.32) £ =75
(5.33) fgz cos a =

(5.3)4') fg sin O =

|>w|&. [>m|5

These formulas can be used only when Y < 20°. On the other hand,
the effect of zones ¥ > 20° is often negligible. Otherwise, this effect
may be computed for a few points only and interpolated for the other
points. When the components Sn, Sm, Szhave been computed, we must

convert them to the system x,y,z by the matrix multiplication:

SX - cos pcos A - singcos A - sin A 8n

(5.35) Sy =] - cos ¢ sin A - sin ¢ sin A cos A 8m
- si 3

BZ sin o cos @ 0 P

The components

6A along the trajectory

SR horizontally to the right hand side

SD perpendicularly (not vertically) down .

can be obtained as follows. Take three consecutive points Pi 17 Pi

and Pi+l of the trajectory. Compute:

2k




x' = x - X

i+l i-1
.36 v -
(5.36) ¥ Voom = Taq
z! = 2, - Z,
i+l i=1

2
n _(X'Ki+y'Yi) Zi'Z,Pi
- 1
r'p, Ty

(5.37) " %‘;Lﬁ
i

! 1 1.
" X' Xy y3+2 27

Z =

r'p,

1
(5.38) pu _ XHB + ynz

- 1" - 1" 1" 6

BA Z X y n
yH XII
XI!ZH yIIZH

SN p" EES 5,

Size of Blocks. Around the point P define four regions, each bounded

by latitudes ¢, @ and longitudes Ay, Ag.

Region A -ty = 3°
Xa— ll = ho
lp - | < 1°
@ @P
A=l < 1° 30!
Region B. - 0, = T7°
outside A Ag= Ay = 9°
lep - | < 3°
Q- 9 3
A - AT <«4®
A XP <

25



Region C. - @ = 25°
outside B Ag- A; = 30°
lp - o | <10
® - o

RIEIRSIE 12° 30!

1, W, A1, Mg are all divisible by 5°.

Region D outside C

For region A , pick up the mean anomaly cards 5'x 5' (36 X 48 =
1728 cards), for region B , 20'X 20' cards (21 X 27 - 9 X 12 = 459 cards)
for region C , 1°x 1° cards (25 X 30 - 7 X 9 = 687 cards) and for
region D , 5°X 5° cards. Region D will be used for a few points
only.

The influence of zone D on 5x, 6y, 62 can also be computed directly
by means of the Cartesian coordinates x,y,z. If these coordinates
X,¥,z are computed for the centers of the 5°X 5¢ squares, then the

integration can be carried out by the formulas

R® M P
o,
(5.40) Aéx = on DJ V) —'7_5,"", do
D V..~
R® M UPp
o — » m————— g
Aéy o ff‘l Qa o

R® M P
bo -E TuEE o

i

where

(5.41) N

2+ (2 2)2

2
(g xp)" + (0 ¥y M ‘p

P

and A6 9 A@ 9 A@ are the contribution of the zone D to & , & , d .
X y 7 x Yy oz
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PART II
by

H. Moritz

6. INFLUENCE OF AN INACCURATE GRAVITY MATERIAL

For simplicity, the error propagation will be studied for the

coating method.

Since, by egs. (5.20) - (5.24), the components of the gravity

disturbance are given by

+2
5:-;—1_“[' Lrp“——(l-tcos‘i')sin‘i’d‘i’da,
" =0 ¥-0  D°

ém . 2 m o2 cos O
{6}= g—n‘f f u'-ﬁgsina‘i’{_ }d‘i’da,

Q
y) =0 Y=0 L Sin

we find for their standard errors mn, %nm, m£:

2 em o 4

2m
1 n t
mn = er_e tr J j‘ ‘J‘. c(‘i’,a,‘i",a') . W (1 - t cos ¥)-
a=0 ¥=0 a'=0 ¥'=0

‘(1L - t cos ¥')sin ¥ sin ¥' 4Y¥ da 4a¥' da',

(6.1)
m® 1 om ™ om T 6
m g g
m® - h_ﬂa -.r I ‘J" ..r G(Y)G;Y'Ja') ) D3pr 8 sin® ¥ sin® ¥r.
£ a=0 ¥=0 a'=0 \}I'=O

cos @ cos Q'
. . . a¥y da qy' aa',
sin & sin O

where o(¥,0,¥',a') is the error covariance function, or error function,

of w [Moritz, 1962a, 1963].




We shall assume uniform coverage of the whole earth by gravity
stations so that ¢ approximately depends on the relative position of
points P(¥,a) and P'(¥',a') only. Furthermore we assume that the error
function has a sharp maximum at P' = P and drops off rapidly to zero

with increasing distance PP'.

Then we can simplify the integrations considerably by approximately

replacing o(¥,a,¥',a') by

(6.2) -ﬂ%;w(% - ¥) 8(at - a)

where &(¥' - ¥), 8(a' - @) are Dirac's delta functions and S is a constant
given by
2m il
6.3y s= [ [ o(¥,0,¥",a') sin ¥' a¥' ao'.
a'=0 ¥'=0

Since according to a property of the delta function

If(x’) 8(x' - x) dx' = f(x),
the integrations with respect to ¥', @' 2an be performed immediately

and we get

s 27 T £
m? = —x f == (1 - t cos ¥)® sin ¥ aY¥ dq,
n L D
o=0 ¥=0
2 2
m 2 T 6 cos~Q
mhe S5 [ I oein®y a¥ da
m® |7 L4n® 56 sn sin®a 7
4 0=0 ¥=0




and finally,

a5 |t*(+34) . t? 2 LS
T T 2(t7.1)° Tt "k Ml
(6.4)
a3 S |t(+*+1) e
"n = My T om [u(t’ 1) *
Since

it R 1
"R+H T

o |
+

(R:mean radius of the earth) we can develop in series, and neglecting

H
higher powers of E we get

SR? SR®
2 _ E. 2 _ 2  _Oh
(6.5) T eme’ ST T 16mH2

(For H = 500 km the error of these approximations is smaller than 7%.)

Validity of the Simplified Integration

Now we have to investigate in more detail the validity of replace
ing the error function ¢ by a product of Delta functions. For
simplicity we limit ourselves to the plane approximation. In this

case, eqs. (5.20) - (5.22) are simplified to

fo o}
H b(x,y)
5 == T ORI
n 2n 'ﬂ£ (B%+x%+y=)%/2 dx 4y

6.6) )
{5m}=-127r I %’{ }dx ay
£ ..}

where the xy-plane is horizontal and the z-axis contains point P.
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These equations have the general form

o]

(6.7)  [f wlx,y) £(x,y) ax ay

= oo

and the mean square error is given by

(6.8)  u® = [[[] olx,y,x",5") £(x,y) £(x',y') dx dy dx' dy’

As before we assume the error function o(x,y,x',y') to have
appreciable magnitude only for (x',y')=(x,y) and to be almost zero
elsewhere. Then, only the points (x',y')=(x,y) will contribute signi-
ficantly to the integral and if we put

x' =x+8&, y' =y+ 70,
then only small values &, T need to be considered. If the usual
conditions of continuity and differentiability are satisfieq,
f(x',y') can be developed in a Taylor series with respect to §, T:

f(X')y') = f(X:y) + g f + 71 f +
X y

1 1
+ = §=f + ENf  + = ﬂaf + ..
2 XX Xy 2 Yy

Inserting this in (6.8) we can separate the integrations over x, y

and over x, y, getting
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g
]

J[ oty xt,yt) axt ayt + [fU£(x,y)]2 ax ay +

v [[ (x'-x) o(x,y,x',y") ax' ay' + [ £ dx dy +

® @
+ [ Gry) olxoy,xt,yt) axt ayr - [ £f axay +
o A

+ % -”‘ (X"X)a o(x,y,x',y") d&x' ay"' - .”‘ ffxx dx dy +
+ [ (x-x)(y'-y) olx,y,x,y') ax' ay' - [f ffxy dx dy +
+;;J"tr (yt-Y)a C(X)YJX'JY') dX' dy' ° ‘,[‘J" ffy‘y’ dX dy v e v 9

provided o(x,y,x',y') depends on x-x', y-y' only, i.e., we have the
same accuracy everywhere. Furthermore, if 0 is a symmetrical
function of x'-x and y'-y which is a very natural assumption, then

the integrals containing x'-x and y'-y linearly will vanish and there

remains
n? = 8o [[T£(x,¥)1? ax ay +
(6-9) h -] - @
+%&4£qmuw+%%lgﬂy@w...
where
So = [[oaxt ay', 8, = [ (x'-x)? cax' @y,
(6.10)

Sz

J[ Gr-y)®o axt ay' .
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If we would have replaced, as before, the error function ¢ by a prod-

uct of delta functions,

So ¢ 8(x'-x) 8(y'-y) >

we would have got

m® = So II [f(X:Y)]B dx dy »

which is the first and principal term of (6.9).

Thus the use of delta functions is justified. Transferring these
results from the plane to the spherical case offers no difficulties.
S., the integral of the error function over the plane (6.10), is

replaced by S, the integral over the unit sphere (6.3); we have the

relation

(6,11) S =—

where the scaling factor R® represents the transition from the
terrestrial sphere (or its tangential plane) to the unit sphere.
The error of the delta function method is the effect of 5; and
S, in (6.9).
In order to evaluate the quantities S, S,, S;, Sz we have to
make some assumption concerning the error function o . If this
function has the character assumed above - everywhere the same form,

sharp maximum at x' = x, y' = y, vanishing farther away from this
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point - then, within the limit of the obtainable uccuracy, we cas

usually take the well-known function

(6.12)  olx,y,x',y') < oge ~O LE=X)F 4+ (1-y)?]

(6.10) can then be evaluated immediately to give

0o TICq
(6.13) So =—, S =8 =—
c? 2c*
and
TOq
(6.14) s = .
c®R®

f

Now we can return to egs. (6.6). First we consider & . Here

H 1
Fov) = o W

Differentiating twice, inserting in (6.9) and integrating yields

So 3(8,+52)

ma—

D ogg®  Ghmpt

The first term is clearly the same as the first equation in (6.5).

Inserting (6.13) we finally get

%
(6.15) m® = (1 - ... )
T ge2y? 8c2H®

and in a similar way we find

Co
(6.16) m® = m® = —— (1
n 4 16c34°

2

_‘éc—;‘H—a'-F...)

The correction term in the parenthesis is practically zero for

-1
elevations H >> ¢ , but in view of the practical purpose of these

33




-1
accuracy formulas, it can already be neglected for H

It
e

Discussion

To sum up the formulas we have for the standard errors of 8n,

5,
5 , 2
ky ks
6. = — =] = —
( 17) mn H ’ mm m£ H
where
SR® SR®
(6.18) Kk, = 5 ke = |1z
and
Moo
S‘ = .
R2c2

-1
These formulas are valid for elevations H>c . TYor smaller

elevations they cannot be applied (for H = O they would yield

2

which is obviously wrong).
The error covariance function ¢ 1is supposed to have the form
(6.12) :

(6-19) c(x,y,x',y‘) = coe-c °

where s is the distance of the points (x,y) and (x',y'). According
to the derivation of the above formulas, ¢ 1is the error function of
b , the density of the coating. Since u=Ag + N , it contains the

2R

influence of errors in Ag and in N . The errors of N have a

3k




small influence but they diminish much less with increasing distance
and can hardly be represented in the form (6.19). So, in order to
apply our formulas, we must be able to neglect the errors of N. That
this is possible can be seen in the following way.

We would have avoided the trouble concerning the errors of N ,
had we used the direct formulas (5.15) - (5.19) instead of using the
coating method (5.20) - (5.24). These formulas are, however, very
difficult to handle for our purpose. On the other hand, for smaller
values of y , where the effect of errors in | 1is largest, F and
f are clesely equal so that, for this particular purpose, we might
replace u in (5.20) - (5.24) by Ag. Then we can take o in (6.1)
and in the subsequent developments to be the error covariance function
of the gravity anomalies Ag only. From this we can conclude that
the error of (6.17) due to neglecting the inaccuracy of N must be
small.

Thus, we can consider o in (6.19) to be the error function for
the interpolation of gravity anomalies. Then,

O = m°
is the square of the average standard error of interpolation, m .

In Table 6.1 some numerical values of m and c are given, together

with the constants k; and kp; defined above.

3




Table 6.1

Constants k;, k 5 for average station distances s

s m c_l Kk, kKo
km mgal km mgal ,km mgal.km
10 1 13 2.5 1.8
50 9 25 45 32
100 1k 45 126 89
200 16 90 287 203

To get the standard errors of & and of & , 62, the above
n m

values for k; and k, have to be divided by the elevation

H in kilometers.

For the computation of the dependence of m and c¢ on the
average station distances,an idealized gravity station net consisting
of equilateral triangles with side s has been assumed. The com-
putation was done in a way described in [Moritz, l962b, Appendix],

using numerical values for the covariance function of gravity anomalies given

in [Kaula, 1959] combined with the standard interpolation errors of

[Molodenskii et. al., 1962, p. 172]. Since the method used is not

quite rigorous, the results of Table 2 must be considered somewhat
preliminary.
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Error Correlation of & , 8 , ®
n m £

For the error covariances of Sn, Sm’ 8 in two points P, P'

y2
we have found [Moritz, 1963] :

Co 3

Lo 3 s
PPt T e D-g g+ -1
O 3 &
L L= S 2
(6.20) Oﬁ;PP‘ = e [1 T (L+2cos®a) + v oo ],
Co 3
S S __3 .S . 8
GE;PP' = e (1 - 7 = (L +2sinfa) +. . . ] .

P, P' are assumed to have the same elevation H, s 1s the distance
and @ 1is the azimuth from P to P'. These formulas, being the first
terms of power series, are valid for small distances s only. For

P = P', by (6.5) and (6.14)

6.21 = ma =] 3 : = 2.
(6.21) o bp =M O pp =Ty Oy pp =T

the error covariances become variances, i.e., the squares of the

standard errors of & , & , &, .,
n m £

Dividing the covariances (6.20) by the variances (6.21), we get

the correlation coefficients

_,.3 5,
pn',PP' - T8 H ST Y9
(6.22) o =1 - 3 Ei (1L + 2 cos®a) + «
m,PP* 16 H® ’
3 s i3
Py ppr ~ 1-% 3 (1 +2 cin®a) + . . ..
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p = £ 1 means meximum correlation, i.e., complete functionél
dependence; p = O means independence (more strictly speaking, com-
plete lack of correlation). For a definite s , the correlation
coefficients (6.22) will be the closer to 1, the greater the altitude
H is. Thus, with increasing altitude, the standard errors of Sn,

S, 62 decrease, but the correlation increases. ©Since the accuracy
m

is characterized by the standard errors and the error correlation,

this is significant, too.

7. INFLUENCE OF THE REMOTE ZONES
The purpose of the estimation of the influence of the distant
zones is to decide how far the integration must be extended if certain
accuracy requirements are prescribed.
Since the effect of the distant zones is almost independent of the
elevation H , we may, for simplicity, put H-=0, i.e.,, we consider P
to be situated directly on the geoid. Then, since
5 - Ag+XW, o =¥E, 8, =90
n R 7 ™m ') ?
we can, for the direct method, use one of the evaluations of the effect
of distant zones on the components & , T of the deflection of the

vertical and on N (e.g., [Kaula, 1957]). For our purpoée it is best

to use the formulas of [Molodenskii et al., 1962] which can also be
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easily adapted to the cpating method.

Direct Method (using Ag). The disturbing potential is

2 T
(7.l.2) T=9yN-= zR?T j' f Ag S(cos ¥) sin Y a¥ da
o=0 ¥Y=0

where S(cos Y) is Stokes' function

1 Y b4
(7.2.2) S(cos ¥) = v - 3 cos ¥ in (sin >+ sina—e—) -
sin E

b4
-6sin§+l-500s‘l’.

If we extend the integration " with respect to Y only up to a spherical

radius ¥ < m, we commit .an error.
o

o1 ™
(7.3.a) AN = )IRF;/ r r Ag S(cos ¥) sin Y d¥ da
S Ta=0 Y=Y
o)
which can be also written
on ™
R = . -
(7.4.8) AN = i f {[‘ Ag S(cos ¥) sin ¥ 4¥ do
TWCZ_O Y=0
where
_ Oif Y <Y
(7.5.a) S(cos ¥) = { © .

S(cos ¥) if ¥ ;\yo

Expand E(cos ¥) in a series of Legendre's polynomials:
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@©

(7.6.2) S(cos ¥) = &
n=0

2n+1l

Q P (cos V)
n n

where the coefficients @ depend on ¥ . Then, by multiplying both
n o}
sides by Pn(cos ¥) sin ¥ and integrating from O to m we find

i m
= b4 ¥) si ¥ = b4 ¥)sin ¥ a¥ .
Qn g S(cos Y) Pn(cos ) sin ¥ d { S(cos ¥) Pn(cos )sin ¥ 4
o

By substituting

¥ Y
(7.7.2) z = sin > t = sin E?
we get
i
(7.8.2) @ =-4 [P (1-22%) (1 - 223) z az.
n 1o

Performing the integration yields (we need the Qn only for n = 2):

Q =2 - L4t + 5t2 + 1ut3 23 tu - 30t5 + u7t6 + 18t7 - %% t8 +

) -y

+

(662 - 2ut’ + 36t° - 18¢°) an t(1rt),

(7.9.a) Q3 =1 - k4t + 5t2 + 22t3 - M6tu - ggg ts + 136t6 + 1out7 -
= l66t8 = h8t9 + 523 10, (6t2 = M2ta + 108t6 = 120t8 2
+ 486™0) m t(1et)
2 L .8
Qu = 5 - Lt + 5t2 + %?t3 - T2t - 156t5 + 320t6 * 36Ot7 -6451
- 3%§9t9 v 6026™0 + Lot - 2106°2 4 (642 - 666" +

+ 26Ot6 = u80t8 + ueotlo - 1u0t12) In t(1+t).
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Higher order Qn (up to 8th order) may be found in [Molodenskii et al., 1962,

p. 149].

By (7.4.a2) and (7.6.2) we get

(7.10.a) AN =1—; z Qn Agn
7n=2
if
n
DNe = = Ae
n
n=2

is the development of Ag in Laplace's spherical harmonics ( Ago and
Mg, are missing, as usual).
The coating method can be treated in an exactly analogous way.

Coating Method (using p). The disturbing potential is

emn o
(7.1.b) T = 9N = 'IE'T; ‘r I M (cos ¥) sin Y a¥ do
a:O \1/:0
where
1
(7.2.b) M(cos ¥) = y -
sin E

If we extend the integration with respect to Y only up to a spherical

radius ¥ < m, we commit an error
o]

R 2m T
(7.3.b) AN =lTn-y j' b M (cos ¥) sin ¥ a¥ do
a=0 Y=Y
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which can be also written

21 T
R - .
(7.4.) AN':l;;& I f b M (cos ¥) sin ¥ a¥ da
a=0 ¥=0
where
0 ifv<y
- o
(7.5.b) M(cos y) =
M (cos ¥) = o 1f Y ;‘Yo
sin 3

Expand M(cos ¥) in a series of Legendre's polynomials:
[+ ]

T (n-1) g P (cos ¥)
n n
n=0

(7.6.0) M(cos Y¥)

1]

where the coefficients g depend on YO. Then, by multiplying both sides
n

vy Pn(cos ¥) sin ¥ and integrating from O to ™ we find

m

q = 2n+l) I M (cos Y) Pn (cos ¥) sin Y a¥ =
0
il

- . b4
2(n-1) Y sin—
o 2
By substituting
Y Yo

(7.7.2) z = sin E’ t = sin —

we get

1
_ 2(entl) a
(7.8.1) q == an(l-ez ) dz.

L2




Performing the integration yields (we need the q only for n 2 2):
n -—

q, = %(1 - 5t + 10t°- 6t5),
a, = %(1 - Tt + 2813~ hot's 20t7),
q, = %(1 - 9t + 60t°- 162t°+ 180t - 7Ot9),
% = %(1 _ 11t + 110t5- k62t + 880t - 77Ot9+ 2521:11),
(7.9.b) q = §(1 - 13t + 1821:3- 1092t5+ 3120t7_ !+550t9+ 3276tll_ 92%13),
q7 = %(1 - 15t + 2801:3- 2268t5+ 90001:7- 19250t9+ 226801:11-
- 1386Otl3+ 3&32*515),
qg = %(1 - 17t + 4O~ 428Ut + 204kot - 65!+SOt9+ 11138%11_

)

- 109956tl3+ 583l+htl - 12870t17) .

By (7.4.b) and (7.6.b) we get

w

R n-1
N = <
A v 2n+1 qnun
n=2
if
n
b= Z W
n
n=2

if the development of W in Laplace's spherical harmonics (p  and Wy
o
are missing together with Ago and Agl).

If

[=-]

Ae = 2 Agn

n=2
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then

-]

N:B gé_g.n.
yn.—_2n-l
Therefore,
-]
_ ¥y, 5 2ntl
h= Ag+ LN~ 2(n-l)Agn
n=2
so that
2n+l
W As_ .

n 2(n-1) n

Inserting this in the formula for N we finally obtain

«©

R
o O = Z
(7.10.b) AN 2 - a_ de

which is analogous to (7.10.a).

Mean Square Effect on N, €, T. Squaring (7.10.a) and averaging over

the whole earth we get

—_— R2 ® *® —
2
= Z G .
AN WH 5'_2 QQ ., -Ae Ae

Since the integral, over the sphere, of the product of two Laplace

harmonics of different degree is zero (Orthogonality !), only the

terms where n' = n remain and we obtain

_ 2 @ -
(7.11.8) AN® - %—3 T Q%A ®
b4 n:2 n n

where AN is the root mean square influence on N of the zones beyond
a spherical radius Yo , and Ag 1is the root mean square average of
n
the Laplace spherical harmonic Ag .
n

Lk



The derivation of the RMS influence on the components &, T of the

deflection of the vertical is rather involved. Since it is omitted in
[Molodenskii et. al., 1962], it may be of interest to give it here.

By (7.10.a),

1y 1 o e
-f m Z iy
¥ Y n_o ¢
A2
(7.12) - e
Apo.—L 38 _ 1 s q —n
Rcos ¢ ON 2y cos @ po B oA

for the direct method. (For the coating method replace Qn by q .)
n

Hence,
> D gy O gnt
n=2 n'=2 n (P cp
E?F_ Ly y T Q qQ 1 0 g, d &nt
= . 3 p
4a” fp pntp B B! cosTe X A
so that
1 o2 3 g, d 1 2g o
Ar2 K-a _ En g1 o gn En'
(7-13) Ab + n = W n?e n?—e QnQn, acp acp : COSFfD a)\ a)\

(The bar denotes averaging over the sphere.)

Mg can be written as
n
n

(7.14) Ag = Z (a cosmh+b  sinm) P (sin o)
n n=0 nm nm n

where anm’ bnm'are constant coefficients and ¢, A are geographical

coordinates, Now we can differentiate with respect to « and A:

L5




m
ap
aAgn n

] n
el z (anm cos mh + b sin mA ) To
m=0
(7015) aAg n n
R (mb  cos mh - ma sinmh) P
oA nm nm R

m=0
Hence we get, taking n' 2 n ,

As Neg, on mn/2 Ag ¥z |
n n _ n n
3

Y cos ¢ dg dA =

2 dp ° ap °
.16 m/ :
(7 ) = 2T a a . I = =

no n'o _n/2 deo do

cos ¢ do +

n /2 o™ ap ™
+ 1T 2 (anman’m.+ bnmpn'm) I n n' cos ¢ do .
m=1 -n/2 de 4

Here we have used the well-known orthogonality relations

om 0, p#aq
f cos pA cos gh dA ={ T, p =g #O0 ,
0 2ﬂ,p=q=0
21
(7.17) g cos pA sin gk d\ = O ,
2m O:P#Q
I sin pA sin gh dA =< m, p =g #O
O O,p:q:o

L6



Similarly

3 Ae Aeg e
l‘.n l Agn n| 2” TT/E l n nl coecp dcp (t} B
P a = 2 s S¥1%
cos®p A A AZ0 o /2 cos®p 3 O\
{728 n n/2 p Mo T
=1 % n®(a a +b b ) f n_n' cos ¢ dyp .
nm n'm nm n'm —
m=1 -1/2 cos®ep
Putting

sin p=x, cos ¢ dp = dx

we find by formulas of [Molodenskii et.al., 1962, pp. 165-6]

/2 m __m 1 . m__ m
aP 4P, ap 4P
f n n' cos ¢ dy = f n n' dx =
-m/2 dp do -1 de  de
2n(n+l n+m). m
[ (n ) . ( ) - m3C , if n' = n,
on+ 1 (n-m)! n
—-i n2¢ ™, if n' - n is even, n' >n
- - n’ - b/ b
0, if n' - n is odd;
\
m/2 __m_m 1 m_m
P B
_I n n' cos @ dp = f n n 4dx =
/2 cosam -1 1-%°
m .
Cn ; ifn' =n,
m . -
= Cn , 1f n' = n is even, n' > n,

tO , if n' - n 1s oddg,

W7



where

cnm - 2(2n - 1) ﬁ(lf—;j—?'— + 2(2n-5) ®

m
(Concerning Cn , there is a misprint on p. 165, op. cit.: " + Cnm"

should read " = C_".)
n

Hence we find, for n' # n:

n
m
) m Z (a_a, + bnmp e -m?C )
e hg np fmon'm n'm n’,
n n' n'-n even,
T dp o
0, n' - n odd,
° m
mT 2 (a2 a 1n S bnmp 'm)-mzcn s
nm n n
ANg e , m=1 ,
n n n'-n even,

m cos®p A M

O, n' - n odd
\

so that

aAgn aAgn' 1 aAgn a‘Agn'

.1 : B
(7.29) dp o ' cos®p A AN 0

for n' # n.

For n' = n we find in the same way

(AASH)E 1 (aAgn)a Sn(ndl) ' 1 n(n+l) ; (n+m)f,(a

bz
dep * cos®p\ N * )

2
= 2om1  no | 2 2m#l  mo1 (n-m)i mm nm
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Forming the average of Ag ® itself we find easily
n

., q BT /2 . |
Agn = T x{o cp{ -n/éAgn cos ¢ dy dA =
(7.20) 0
= 2i1+1 gt 2(2r11+l) o Eii;' (8 p+ 2.2
so that
A \* LAY .
(7.21) ( a(p) + cosacp( T ) = n(n+1) Ag 2

Taking (7.19) and (7.21) into account, we find by (7.13)

. R Vil
Y n=2 n n

For reasons of symmetry, A§ and _AT] can be taken to be equal, and we

finally get

'Ll I 2 A2
(7.22.8) AE® - &P - By x n(n+l) Qn Agn

for the direct method.

For the coating method we must replace Qn by qn, obtaining

o I
] ] ]
(7.11.0) A - &= 3 qna Agn° , |

)“I'}ﬁ n=2

]

B g £ aten) o ALY -
Y no n n

(7.22.1;) Aed
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Relationship between Zign and the Covariance Function. Comparing
eq. (7.20) with eq. (33) of [Kaula, 1959] and taking the relationship
between conventional and fully normalized spherical harmonics into

account, we find that

(7.23) Ag ® =c,
n n

the coefficient of n-th degree in the development of the covariance

function of gravity anomalies, C(s), in a series of Legendre's poly-

nomials:
(7.24) c(s) = = ¢ P (cos s).
o 7

Mean Square Effect on SN, ) SL. In order to avoid confusion, we
i VI

shall change our notation of the components of the gravity disturbance

vector, now writing as subscripts, capital letters N, M, L instead

of n, m, 4.
Then,

2
(7.258) & = Ag + X, & —~E & = 9.

Denoting the RMS effect of the zones beyond Wo on these components
by EN’ EM’ EgL’ respectively, we find from (7.1l.a,b) and (7.22.a,b),

taking (7.23) into account, the following formulas:

50




Direct Method

59 - Q% ,
N nep n n
(7.26.2) N
2 _ s 1 2
AESM _KS—L =3 nE:gn(nﬂ_) Qn c -

If we use the coating W , then

v
=N, &, =€, & =90,

(7.25.b) aN ol - .

and we have instead:

Coating Method

1
b= T e,

(7.26.p) ®
ZSS;4a -15.° =

Zn(ntl) g®c .
n n
n=2

t
|+

Numerical Results. First we give tables for the Qn (Table 7.l.a,
taken from [Molodenskii et.al., 1962]), and for a (Table T.1.b,

computed by egs. (7.9.b)).
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Coefficients Qn for

8.99° (1000km)
10°
13.49° (1500km)
17.99° (2000km)
20°
25°

100
110°
120
130°
140°
150°
160°
170°

180°

%

+2.000
+1,801
+1.634
+1.593
+1.457
+1.306
+1.247
+1.133
+1.062
+1,021
+1.0kk
+1.040
+0.958
+0.807
+0.636
+0.504
+0.441
+0.431
+0.430
+0.389
+0,291
+0.159
+0,0L5

0.000

Table 7.l.a

the direct method as functions of radius Y
o)

Q

3
+1,000
+0.802
+0.639
+0.596
+0.472
+0.339
+0.290
+0.,204
+0.161
+0.1k4k
+0,122
+0.02k4
-0.130
-0.260
-0.306
-0.274
-0.222
-0.208
-0.237
-0.263
-0.23k4
-0.145
-0.0kkL

0.000

Q,

+0,667
+0.470
+0.312
+0.274
+0,159
+0.049
+0,011
-0.0Lk
-0.058
-0.051
-0.09k4
-0.188
-0.240
-0.187
-0.068
+0.024
+0.049
+0.047
+0,078
+0,1k0
+0,171
+0.127
+0.043

0.000

52

%

+0.500
+0, 30k
+0.152
+0.118
+0,015
-0.070
-0.09k4
-0.116
-0.103
-0.080
-0.116
-0.13k4
-0.053
+0.073
+0.128
+0.090
+0.038
+0.028
+0,019
-0.039
-0.107
-0,107
-0.0k1

0.000

%

+0.400
+0.206
+0.061
+0,030
-0.058
-0.116
-0.127
-0.120
-0.087
-0.057
-0.067
-0.009
+0.095
+0,111
+0.023
-0.046
-0.043
-0.035
-0,050
-0.025
+0.,050
+0.086
+0.039

0.000

N
+0.333
+0.141
+0.00k
-0.02k
-0.095
-0.126
-0.125
-0.093
-0.050
-0.024
-0.006
+0,069
+0.081
-0.016
-0.076
-0.03k4
+0.008
+0.010
+0.03k4
+0.050
-0.006
-0,064
-0.037

0.000

+0

-Oo

+0

+0.

+0

-0

-0.

-0.

+0

+0.

+0.

%

.286
.095
.032
.056
.110
.118
.105
057
013
.002
033
.063
.015
075
011
Ko}
020
010
.003
.045
.023
Lokl
.035
.000




Table 7.1l.b

Coefficients qn for the coating method as functions of radius YO

Y q

o 2 & %, % % B 9
0° +2.000 +1.000 +0.,667 +0.500 +0.400 +0.333 +0.286
5° +1.565 +0.697 +0.408 +0.265 +0.179 +0.123 +0.083

8.99°(1000km) +1.226 +0.465 +0.215 +0.095 +0.026 -0.016 -0.042
10° +1.,1h2 +0.408 +0.170 +0.056 -0.007 -0.044 -0.066
13.49°(1500km) +0.858 +0.222 +0.02% -0.062 -0.102 -0.119 -0.121

17.99°(2000km) +0.512 +0,009 -0.128 -0,170 =0.173 -0.156 -0.129

20° +0.366 -0.075 -0.182 -0.202 -0.185 -0.152 -0.113
25° +0.033 -0.251 -0.275 -0.233 -0.169 -0.101 -0.040
30° -0.255 -0.374 -0.309 -0.206 -0.103 -0.018 +0.040
40° -0.676 -0.460 -0.228 -0.045 +0.066 +0.103 +0.085
50° -0.878 -0.363 -0.037 +0.116 +0.127 +0.057 -0.021
60° -0.875 -0.156 +0.138 +0.153 +0.040 -0.058 -0.071
70° -0.707 +0.070 +0.206 +0.061 -0.074 -0.073 +0.007
80° -0.433 +0.235 +0.,149 -0.064 -0.090 +0,01k +0.060
90° -0.121 +0.293 +0,018 -0.119 -0.007 +0.068 +0.003
100° +0,165 +0.241 -0.101 -0.070 +0.070 +0.020 =0.050
110° +0,376 +0,115 -0,147 +0,026 +0.060 -0.,048 -0.011
120° +0,484 -0,028 -0.105 +0.086 -0.012 -0.039 +0.040
130° +0.488 -0,137 -0.014 +0.068 -0.058 +0.020 +0.015
140° +0.,406 -0,178 40,065 +0,002 -0.035 +0.041 -0.029
150° +0.275 -0.153 +0.092 -0.050 +0.018 +0.004 -0.016
160° +0,138 -0.088 +0.066 -0.051 +0.038 -0.027 +0,018
170° +0.037 -0.025 +0.021 -0.019 +0.017 -0.015 +0.01k
180° 0.000 0,000 0,000 0,000 0,000 0.000 0.000
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Now we are going to evaluate formulas (7.26.a,b) for the direct
and the coating method, for different sets of . First we use the

maximum estimates for . of [Kaula, 1959, p. 2419]:

_ _ _ _ ~ _ _ 3
c, = 15, c3 = L3, c, = 30, c5 = ¢, = c7 =cg = 25 mgal?

The results are given in Table 7.2. The summation has first been
extended to n = 8; higher order cn have been neglected. In order to

see the convergence of the series (7.26.a,b) we have also performed

the summation up ton = 5 only.

S5k




Table 7.2,

RMS influence of the zones beyond a radius Yo on BN, o} BL, based

M)
on the maximum estimates for the degree variances of [Kaula, 1959]

Summation up to 8th order Summation up to 5th order

Direct Coating Direct Coating

Y AEN Ro = ho Do Bo-Bo Ao Do - Lo 5 B - B,

mgal mgal mgal mgal
5° 9.4 10.6 2.0 9.3 9.3 10.1 2.0 8.8
8.99° (1000km) 7.8 8.1 1.4 6.0 7.8 8.1 1.4 5.9
10° 7.5 7.7 1.3 5.4 7.5 7.6 1.3 5.3
13.49°(1500km) 6.6 6.7 1.0 4.3 6.5 6.3 0.9 3.4
17.99°(2000km ) 5.7 5.9 0.7 4.3 5.6 5.2 0.6 2.6
20° 5.4 5.6 0.6 bl 5.2 4.9 0.5 2.8
25° b7 4.8 0.7 4.5 L7 4.3 0.6 3.8
30° 4.4 b1 0.8 Y7 4.3 4.0 0.8 4.6
40° y,2 3.8 1.1 5.2 b1 3.7 1.0 4.8
50° 4,2 4.0 1.1 4.6 4,2 Z.9 1.0 4,3
60° 4.3 4.3 0.9 4,0 y,2 4o 0.9 3.7
70° 4.1 4.3 0.8 3.3 4,0 4.0 0.8 3.1
80° 3.8 4,2 0.6 3.1 3.7 3.8 0.6 2.8
90° 3.3 3.7 0.5 2.8 3.3 3.5 0.5 2.6
100° 2.7 3.0 0.5 2.6 2.7 2.9 0.5 2.3
110° 2.3 2.4 0.5 2.2 2.3 2.4 0.5 2.0
120° 2.2 2.3 0.5 2.2 2.2 2.3 0.5 2.0
130° 2.4 2.6 0.5 2.2 2.3 2.5 0.5 2.1
1400 2. 3.0 0.5 2.2 2.4 2.8 0.5 2.0
150° 2.2 2.8 0.k 1.8 2.2 2.8 0.k 1.8
160° 1.6 2.4 0.2 1.3 1.4 2.0 0.2 1.1
170° 0.6 1.1 0.1 0.5 0.4 0.7 0.1 0.4
180° 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Fig. 7.1 shows a graphical representation of the first part of

Table T7.2.
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One would expect a rather monotonous decrease of the curves from
0° to 180°. The non-monotonousness is especially apparent in the
coating method. It is probably due mainly to neglecting terms of
higher than 8th order: it is still stronger if we use only terms up'”
to 5th order as Table 7.2. shows. It seems, however, to be hardly
worth-while to go up higher than to 8th order, in view of the increasing
complexity of the formulas for Qn and qn and the uncertainty of the
numerical material for cn. Since the higher order terms can be ex-
pected to influence mainly the dips, it is justifiable to '"bridge"
them empirically in order to get a smooth monotonous function.

More recent values for the cn can be obtained from [Eégig, 1961]
and from [Uotila, 1962]. Both give a development of the gravity anomaly
field in fully normalized spherical harmonics. Writing (7.20) in fully

normalized harmonic coefficients we get [Kaula, 1959, eq. (33)]

n
- Ke - 2 2
Cn= D& z (anm * bnm ).
m=0

By this equation, the cn can be computed.

From [Uotilse, 1962, Table 5] we get (flattening 1/297):

Only values up to 4th order are given. The almost perfect agreement
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with the c of [Kaula, 1959] is accidental.

From [Kaula, 1961] we get for the flattening 1/298.24:

c=0.,7, c=19, ¢ =11, c_=6, cp= 11,

5 3 c7= c8= 58

if we use the flattening 1/297, then oy is changed to og= 17. The
influence of the distant zones, according to these values, is given in
Table 7.3 and in Fig,., 7.2, We see that the effect of a wrong flattening
is much stronger in the direct than in the coating method. This can be

expected since, as Tables T7.l.a and 7.l.b show, gz is smaller and changes

sign more often than Q.
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Table 7.3.

RMS influence of the zones beyond a radius Yo on d_, SM, SL,
for two different flattenings, based on a spherical harmonics
development obtained by a combined adjustment of gravimetric, astro-

geodetic, and satellite data [Kaula, 1961] (summation up to 8th

order)
flattening 1/298.2k4 flattening 1/297
Direct Coating Direct Coating
Y Aoy, E’;&: Z5—L ES—N E;/f E’; qu ENI: ABL ASN AaM= AaL
mgal mgal mgal mgal
5° 4.3 5.7 0.9 5.0 8.5 8.6 1.9 7.
8.99°(1000km) 3.3 4.1 0.6 3.0 7.5 7.1 1.4 5.3
10° 3.1 3.8 0.5 2.6 7.2 6.8 1.3 4.8
13.49° (1500km) 2.5 3.1 0.3 1.9 6.5 6.0 0.9 3.6
17.99° (2000km) 2.0 2.5 0.3 2.2 5.7 5.3 0.6 2.8
20° 1.8 2. 0.3 2. 5.4 5.0 0.5 2.7
25° 1.4 1.9 0.4 2.7 4.8 L L 0.4 2.7
30° 1.2 1.5 0.5 2.9 4.5 4.1 0.6 3.1
40° 1.1 1.3 0.6 3.0 4,3 3.8 0.9 3.8
50° 1.2 1.4 0.5 2.4 L4 4.0 1.0 3.9
60° 1.2 1.5 0.3 1.6 LY 4.0 0.9 3.5
70° 1.k 1.9 0.3 1.5 4.2 3.9 0.8 2.9
80° 1.6 2.1 0.3 1.8 3.6 3.6 0.5 2.3
90° 1.6 1.9 0.3 1.7 3.0 3.0 0.4 1.8
100° 1.3 1.7 0.3 1.6 2.4 2.4 0.3 1.7
110° 1.1 1.3 0.2 1.2 2.1 2.0 ok 1.8
120° 1.0 1.2 0.2 0.9 2.0 2.0 0.5 1.9
130° 1.2 1.4 0.2 1.0 2.1 2.1 0.5 2.0
140° 1.3 1.7 0.2 1.1 2,0 2.2 0.5 1.8 '
150° 1.2 1.7 0.2 1.0 1.7 2.0 0.3 1.4
160° 0.9 1.4 0.1 0.7 1.1 1.5 0.2 0.9
170° 0.3 0.6 0.0 0.3 0.k 0.6 0.1 0.3
180° 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
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Finally we consider the spherical harmonics expansion of Zhongolovich

quoted and used in [Molodenskii et al., 1962, pp. 145-6]}. Here,

c=6l, c_= 96, c)= 12, c.= 8, = 8 mgal

5 3 5 1k, c7= 5,

C6= C8

(computed by c = Eg 2), With these coefficients we find values con-
n n
siderably higher than those given above (Table 7.4). They are, however,

probably too high since the development of Zhongolovich is already out

of date (it was computed in 1952),
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Table T.4

RMS influence of the zones beyond a radius Yo on BN’ o 5 _, based on

M
the spherical harmondcs development of Zhongolovich, 1952 (summation

up to 8th order).

Direct Coating
Y Be, Do AsL KaN &_M-.- A_B_L
mgal mgal
59 16.2 16.0 3.5 13.9
8.99° (1000km ) 14,2 13.6 2.6 10,1
10° 13.8 13.0 2.k 9.2
13.49°(1500km) 12,3 11.5 1.8 6.6
~17.99° (2000%m ) 10.7 9.9 1,0 4,2
20° 10.2 9.3 0.8 3.7
25° 9.1 8.2 0.7 4.0
30° ‘8.4 7.5 1.1 5.3
40° 8.1 7.2 1.7 7.4
50° 8.2 7.3 1.9 7.5
60° 8.2 7.2 1.8 6.4
70° 7.6 6.9 1.4 5,0
80° 6.8 6.5 1.0 4.3
90° 5.8 5.7 0.8 3.7
100° 4.8 4,8 0.7 3.3
110° 4.1 4,0 0.8 3.k
120° 4.0 3.9 1.0 3.4
130° b1 4.1 1.0 3.7
140° 4.0 4.2 0.9 3.5
150° 3.3 3.6 0.7 BT
160° 2.0 2.4 0.4 1.5
170° 0.6 0.8 0.1 0.5
180° 0.0 0.0 0.0 0.0
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Conclusion. On the whole, the values of Fig. la,b, based on [Kaula,
1959] and confirmed by [Uotila, 1962], might be the most realistic
estimates, apart from the dips. We should like to propose the

smoothed values of Table T.5.

Table 7.5
RMS influence of the zones beyond a radius YO on &_, SM’ SL; proposed
values.
Direct Coating
mgal mgal
8.99° (1000km) 8 8 2 6
13.49° (1500km) 7 7 2 5
17.99° (2000km) 6 6 2 5
20° 6 6 2 5
25° 5 5 2 5
30° > > 1 >
L5° 5 5 1 5
60° L4 5 1 4
90° 3 4 1 3
120° 2 3 1 2
150° 2 3 0 2
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These values are referring to a flattening in the neighborhood of
1/297. If we use a better flattening, then these values should be
somewhat less,

We see that for Yo > 20° or 30° the influence of the distant
zones decreases very slowly. It is, therefore, impractical to extend
the integration much farther than 20° (coating method) or 30° (direct
method), unless it is extended over the whole earth.

The effect of the distant zones on 6M and 6L is somewhat less
in the coating than in the direct method. The effect on SN is much
less, By using another method which will be described in the next
section, however, the influence of the distant zones on 6N can be
made still smaller.

8. PRACTICAL COMPUTATION OF THE GRAVITY DISTURBANCES

We shall describe now a method for the practical computation of
gravity disturbances. Since the geoid undulations N have been com-
puted for large parts of the world--the accuracy is as good as the
existing gravity material--we can assume them to be known. Therefore,
the coating method can be applied which has certain advantages over
the direct method: simplicity, less influence of the distant zones,

etc,

Upward Continuation Method. For the vertical component & there is,
n

however, a method which 1s still better than the coating method.
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Compute the vertical component at ground (or at the geoid) by
2
(8.1) 5°-Ag+Xn.
n R

. T . . . . .
Since rSn = -T S_ is a harmonic function, Poisson's integral for
r

harmonic functions can be applied to give

3 2 °
= « R°d
™= TR ~£ ! D? o

where

I‘=R+H,

D= VRa + r® - 2Rr cos ¥ .
s

Setting as before

R+H’

D=)/1- 2t cos ¥ + t2
we have
D:I‘D.

Hence

23 2 o
6.2) 5 - TEEL g7 S
o}

where 8n° is given by (8.1).

This formula (8.2) is called "upward continuation integral";

it can also be used for the upward continuation of the gravity

anomalies Ag , since rldg is also a harmonic function. Here,
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however, it is used for the upward continuation of the gravity

disturbances.

If we compare (8.2) to the corresponding formula for th= coating

method,

1 t2
(8.3) Sn = 5 If Moo = (1 - t cos Y) do
o

where
3
u=Ag+§§N,

then we find that the integrand in (8.3) decreases, with increasing
distance D , like 1/D, whereas in the upward continuation integral
(8.2) it decreases much faster, like 1/p® .. It can, therefore, be
expected that the influence of the distant zones in the upward con-
tinuation method is much smaller than in the coating method.

Indeed, if we put H = 0, then Sn = 6n° , i.e., the gravity
disturbance is equal to the point value in P itself and it does not
at all depend on the other values and on the distant zones. Thus,
for H = O the influence of the distant zones is rigorously zero in
the upward continuation method whereas, as we have seen in section 7,
this is not at all the case in the coating method (neither in the direct

method, as a matter of fact). From this we can conclude that, even

for higher elevations, only the nearest surroundings of P will be of

some influence.,
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Therefore, we can replace the terrestrial sphere by its tangential
plane at P. If in this plane we assume a rectangular coordinate system
x,y (origin P; the x-axis pointing northward, the y-axis pointing

eastward), we have instead of (8.2) the plane formula

(8.4) sn =

[--]
H 5p°
5; £ (Ha+x2+ya)a/2 dx dy .

8 < 8

In order to estimate the influence of the distant zones beyond a

certain distance s from P we introduce polar coordinates s, O by
o}

X = s cos QU
Yy = s sin @,
getting
R H om  ® Bno
n_ om ng Szg TEE:;§3§7§ s ds da .

The influence ABn of the zones beyond the distance s 1is given by
o}

g % 50
A6n=-2—TT I IWSde@.
o=0 5=8_

Since for large s, H® + s° = s , we can simplify this to

- o]
6=H '—n's'sds
A n I s
s
o
where & is the average of B ° over the circle with radius s.
n,s n
If M is the upper limit of the absolute amount of & :
n,s
5° <M,
n,s




we get

©
ds H
5 < HM — = — .
l& n I s® s M
so o)

To get some kind of average effect AS rather than this maximum
n

estimate, we may replace M by the average disturbance M outside the

radius s which is certainly close to Ot

(8.5) Egrl':H—ﬁ )

S
e}

From this we see immediately that, to get the same error for different
elevations, So must be proportional to H. If, e.g., s = 10 H, then

0
As - 0.1,
n

Since M will hardly exceed 10 mgal, A&n , in this case, will be smaller

than 1 mgal, ©So, it should, in general, be sufficient to go as far as

10 times the elevation. For larger H, conditions are even more

favorable since, the larger So is, the smaller can M be expected to be.
Plane formulas analogous to (8.4%) also hold for the horizontal

components J and o, :
m £

8m Ll P 6mo
(8.6) I [ [ 1 o ob X Ay .
) o e (HxPay ) £

But, since 8m° = € , 8£° = YN , the use of these formulas would

require the knowledge of the components &, T of the deflection of the

vertical in the entire neighborhood of P . If we know € and T , then
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these formulas can indeed be applied with advantage. (To compute E&
and T by differentiating the N-field will not, in general, be
accurate enough.) In the following, however, we shall regard only
Ag and N as known, so that 6m and 61, must be computed by the

coating method.

Formulas and Approximations. For easy reference we put the relevant

formulas together:

£3(1-t?) B5y,°
(8.7.a) 5 =i ‘CI;I oo 49,

o] £2 " cos &
m
oTe — e e 3 v
(8.7.p) 62‘ 2 ?c”‘ D° sin {sin a do

where

R

t=m, D=lfl-2tcos‘i’+t3, dc = sin Y d¥ dq;

o AL L2
6n _Ag+R N,

_ 54
p,_Ag+2RN.

At least for the nearest neighborhood of P, the spherical formulas

can be approximated by plane ones:

(8.8.8) 5 =2 [ 5 axay,

o) X
(8.8.b) Sm}=.§; fj'g‘-"g{ }dxdy



where

(8.9) D “YER o x4 y? .
They follow from (8.7.a,b) by a series development with respect
S H .
to ¥ = E and to R if we put s cos =%, s sin @A =y .
In order to get an estimate on the validity of these approximations,
we develop 1/D° or, which is equivalent,

1 1 B 1
D% ~ (R+H)®D® (R®4+r®-2Rr cos ¥)3/2
S

in this manner, finding

1 1 3 H s® 1 gt
8.10 - = ( 1 -= = = = 4+ . . .)
(8.20) [F =7 > RD2 '8 R 3 .
S @] @] @]

Here l/D3 is spherical and l/DO3 is the equivalent plane quantity (8.9);
s

and s® = x® + y2 .

The first small quantity in the bracket is
3EsT L3
2RD® 2R’

o]
independent of the distances. If H = 63.7 km, this is 0.015 or 1.5% 9
if H = 637 km it is 154 . Since the higher up we go the smaller the

gravity disturbances are, this can be neglected anyway. The second term is

S4 N SQ

8R3DO2 8r® °

For s = 1000 km this is 0.003 or 0.3% ; for s = 2000 km it is 0.0l or
l% . This can be neglected, too; the more so as l/DO3 itself becomes

smaller with increasing distance.
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We see that up to 20° distance from P we can, in general, use the
plane formulas (8.8.a,b) instead of the spherical ones (8.7.a.b). In
particular this holds practically always for the upward continuation
integral (8.8.a), except for very high elevations ( > 250 km, say).

It is also useful in the case that in the coating formulas (8.7.b) we
extend the integration only up to 20° (as we have seen, it is impracti-
cal to go much farther unless the integration is extended over the
whole earth, which of course is necessary for highest accuracy).

Now we have to show how the x,y in (8.8.a,b) are to be computed.

The simplest way is

X=R(‘~P'(P,P):
(8.11)
v = R cos mP (h - KP) 3

another way,

x = R(yp - mP) s
(8.12)
vy = Rcos ¢ (A - KP) .
The x's are the same in both; the y's differ in that in (8.11)
we have the factor cos mP and in (8.1@), the factor cos ¢ . In our
latitudes there is, for largel ¢ - mg , a big difference between both

formulas. Take ¢ .= 4o® , | o - ¢A = 20° , i.e., @ = 20° or 60°., Then

cos 20°

0.940 ,

cos 4o°

0.766 ,

cos 60° = 0.500 .




The differences between cos ¢ and cos ¢p are 22% and 35%!

It is easily seen that (8.12) is preferable for larger distances;
only if we use this formula rather than (8.11) is the reasoning fol-
lowing (8.10) applicable. The disadvantage of (8.12) is that the
5'x 5%, 1°X lo, etc., blocks are not rectangles in the system x,y but
trapezoids. In (8.11) these blocks are represented by rectangles.

Evaluation of the Integrals. In practice, the integrals must be evalu-

ated by sums, The formulas (8.7.a,b) and 8.8.a,b) are of the type

(8.13.2) &= [[ n - £(g,\) dq ,

il

(8.13.p) &

U

[[w - £(x,y) da.

In & wve have 5 ° instead of p; ¥,a,D in (8.7.a,b) are, of course,

n
functions of the geographical coordinates ¢, A; dg is the element of

area, defined by

dg = R%do = R® cos ¢ do ar ,
dx dy,

Il

dg
respectively.

The preceding integrals can be approximated by sums:

(8.14) 5 =X by C
where
(8-15-3) Ck = f(cpk: Xk) . qk’
or

= f .
(8-15 -b) Ck (Xk’ yk) qk’
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H 1]
where a, is the area of a certain block Bk (5 x5 or1°x1°,

say), and ?, > A or x

K K’ yk are the coordinates of the center of

the block B .
e bloc .

Especially for low elevations and for the nearest neighborhood of

P it is better to compute ck in the integrated form.
We limit ourselves to rectangular coordinates x, y. Then
by

L 3

(Fig.8.1)we can compute c
% k

—Y

Figure 8.1

(8.16) e, = F(1) - F(2) + F(3) - F(4)

where

(8.17) F(xy) = [f £(x,y) ax ay

is the indefinite double integral of f(x,y) so that

aaF(x,y)

f(x)y) = axay

T3




and, e.g., F(1) is the value of F(x,y) in point 1.

As a matter of fact, this is equivalent to computing ck by

(8.18.a) c

Il

. tﬁr f(x,y) dx dy
Bk

rather than by

(8.18.v) c

R ACE R

If f(x,y) varies 1little in the block Bk considered, then (8.18.3)
and (8.18.b) are practically equal. If not, then (8.18.a), i.e.,
(8.16), is to be preferred: if W is constant throughout the block,
then (8.18.a) yields the correct result whereas (8.18.b) does not.

(8.18.b) is in this case, therefore, subject to a systematical error.

Let us now return to formulas (8.8.a,b). For (8.8.a),

T (x ) = i = 5 i g
n XV = 2TTDO3 - 2n(xa+y2+ﬁ§)3/2 ’
for (8.8.1),
X X
fm(X:Y) = 21'I’Doa = 21'r(x‘°‘+y2+H°)3T§ )
N
f = = ) L]
£(X’y) 2TTDos 2n(xa+ya+H2)3/2

Integration by (8.17) yields

1 oY) =
(8.19.a) Fn(x,y) s tan HDo s

Th



1
(8.19.0) F (%) = - = 4n (y + D) ,

1
(8.19.c) Fz(x,y) =- > in (x + Do) .

Then, the coefficients ¢, for Sn, Sm, 62 can be computed by (8.16).

In order to be able to apply (8.16), the figure 1234 must be an
exact rectangle. Therefore, x,y must in this case be computed by
(8.11) instead of (8.12). Therefore, we are limited to the nearest
surroundings of P where (8.11) and (8.12) are practically equal,
say to a rectangle 3° X 4° in the center of which P 1is situated
(Region A, p. 25). Outside this rectangle, ck can very well be
computed by the simpler formula (8.18.b).

For the computation of the contribution of the innermost zones
it is necessary to use as small blocks as possible. The smallest

1 1

size is usually 5 X 5 . Even so, 1t might be necessary to take the
deviation of the gravity anomalies from the mean anomaly of the
respective block into account.

For this purpose we consider the gravity anomaly to be a linear
function throughout the block. Then,
(8.20) Ag = B &1X + &y .
Inserting this in (8.8.a) and (8.8.b) and integrating over one block

Bk only we get

[P,




5 =H J +

A . (ao o + ayJdy + agda) ,
5 =

A - aOJl + alJll + angg 3

Abl = aOJZ + aydyg + axdas

where ASn, A&m, ASZ are the contributions of the block Bk to Sn,

& d
Sm, P an

(8.21) J = F(1) - F(2) + F(3) - F(&4)

where
1 dx dy 1 (-1) xy 1
Flxy) =50 I = - 5o ten - a0V
(o] (o]
1 x dx dy 1
Fl (ny) = -2—-” II -TDZS_-_ == -E—T-T zn(y+Do) = Fm(xJY) b
1 y dx dy 1
Fa(x,y) = - [T S5 = - o (D) = F,(6y)
(8.22) ©
1 x* dx dy ¥ H (-1) xy
Fi1(x,y) = E II T Ln(x+Do) - on tan EB; 5
(o]
1 xy dx dy Do
Fia(x,y) = 5= [f o3 =" on
(0]
Roa(x,y) = = [] yraxdy x o,y B (L)
22\X,¥) = o Doa = o o o HDO .

Consider now the contribution of the innermost block. Let the
sides of the block be 2a, 2b, so that the points 1, 2, 3, 4 have the
coordinates:

1(-a, -b) 2(-a, +b)

3(+a, +b) k(+a, -b),



Then,

and
(8.23.a) Aan =aHT ,

(8.23.b) Ad
m

I

\Y
&

g
o5
i
.

(8.23.c) A8 = ayl, ,

£
where
(-1) ab
Jd = — tan
o T HD ?
0,1
b D 2 -1 b
B, oD pdheea B (SN b
s D°)1 - a s H]Do’]_
(8.24)

- b
EZnM-gtaH( 1) _a

Do,y -b m HDo,y

Jaz =

Doy = Véa + b2+ H?,

We see that for the central block A6n is the same as if we
would use formula (8.16). For A@m and Abn (8.16) yields zero
whereas the correct values are given by (8.23.b,c).

In order to estimate numerically the contribution of the
innermost compartment, A6m and Aéz , we take it as a square with
sides s , so that

-

a=b=s53 Do,y = 2s® +H,

Since, then, J;; = Jpp it is sufficient to consider Aam only.

7




We have

D 2 Sl
(8.25) R & tan( ) = ;

il DO,I - S ™ H'Do,l

we take

s=’+km

H 1
which corresponds to the average size of 5 X 5 blocks., Table 8.1
gives the values of J,, for several elevations H .

Table 8.1

Factor J,, for s = 4 km as a function of elevation H

H Jyq
km km
0] 2.24
1 1.41
2 0.87
5 0.23
10 0.04
20 0.01
50 0.00
100 0.00
If we have a north-south gradient a; = 1 mgal per 1 km, then

J,11 is numerically equal to the effect Aam in mgal; e.g., for H = 0

we have

Aam = 2.2 mgal .
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Since also gradients of 2 or even 3 mgal/km are possible, the
effect of the gradient on the horizontal compOnentsAﬁm and Aﬁz
can be considerable for lower elevations, H <5 km. For H >5 km,
the effect of the gradient is negligible.
We have also to investigate the influence of the eight blocks
adjacent to the central cne. Since the effect is a maximum for
H =0, we consider this case only. We again take the block to be a
square, but with arbitrary sides. We find that the effect of the
innermost block is
(8.26) Aam = 0.561 a;s
and the combined effect of the eight surrounding blocks is only
(8.27) Aam = - 0.071 a;s .
If the gradient a; = 1 mgal/km and s = 4 km (5' X 5' blocks), then
A'Sm =-0.3 mgal .
These values hold for H = O , but even here the effect of the gradient
in the surrounding blocks will be negligible in most cases, even if
it must be taken into account for the central block (for H <5 km).
These considerations are equally valid for the component 62 ]
we have only to replace a, by the east-west gradient a; . For the

vertical component 8n , the influence of the gradients a; and ag

will always be negligible,

9




An easy way of computing the gradients a; and ap; which can also

be used for high-speed computations is (Fig. 8.2):

X X X la
b 0 2
~2b
3
F.gure 8.2

Station and Substations

(8.28) 84 =A_gl)+_-;Ag3' 3 ag =A_ng+;_Ag£ .

Ag, through Ag, are the gravity anomalies in the centers of the
adjacent blocks 1 to 4, which we call substations. These point
anomalies can also be replaced by the mean anomalies of the respective
blocks, provided the gravity anomalies are sufficiently linear (this

is presupposed in (8.28)).

Station and Substations. For reasons of symmetry the station P

at which Sn’ %, 6£ are computed must be at the center of the
m
1 1
central block., If we, however, use given 5 X 5 mean anomalies
for which the division into blocks is fixed a priori, it is best to

select 5 substations (centers of adjacent blocks) O, 1, 2, 3, 4 (Fig. 8.2)
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and compute the gravity disturbance in those three substations which
are the corners of a triangle containing P in its interior (0, 1,

4 in Fig. 8.2).  The value for P is then interpolated between these
three substations. This procedure is particularly necessary for
elevations smaller than about 70 km,

Summary of Formulas and Outline of Computation. In the following

we shall give a computational method valid for any elevation from
O to several hundred kilometers. It is, therefore, 'suitable for the
computation of the gravity.vector along rocket trajectories.

According top.25 we use the followirg regions

A G- @ =,.3° 1 1
5 X5 blocks,
)\2 - )\1 = )+°
o}
B (PZ - (PI = 7 ' ]
outside A, 20 X 20 Dblocks,
Ag - Ay = 9°
C G - ¢ = 25°
outside B, 1° X 1° blocks,
Ae - M o= 30° -
D outside C, 5° x 5° blocks.
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1, For each block compute

[+}
b=Ag + 0,231 N, 8n=Ag+O.308N;

[o]

Ag: mean free-air anomalies, N: geoid undulations; [Xg, K, Sn in

-mgal, N in meters,

2. For each station P select 3 substations, according to Fig. 8.2,

One substation, O, is the center of the block in which P 1lies, the
other two are centers of adjacent blocks so that the three substations
form the corners of a triangle containing P . The elevation of each
substation is equal to the elevation H of P .,

The gravity disturbances are computed at each substation and

are interpolated for P .,

In the following, only the substations will be considered; they

will be dencted by Q .

3. Now we consider one definite substation Q only.

Zone A,

Compute for all grid points ( = corners of blocks):

X

R(o - ‘PQ) ’

y

R cos %0 (A - XQ) H
Ig: foa + y’ ¥4ﬁ5‘;
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1 -1
TR
n 2TT I‘LDO

=]
!

=
t

1
- —— D
m o n (y + O) P)

1
Fz = -5 In (x + Q}

Compute for each block

Q
i}

F (1) -F(2) +F(3)-F (k) ,

(¢
1l

F@)-F (@) +F(3)-F (&) ,

Q
1l

, = F,(1) - F(2) + F (3) - F,(4)

Be zure that the grid points 1, 2, 3, 4 are arranged as in Fig. 8.1.

For elevations H > 40 km the coefficients ¢ can also be com-

puted as in zone B,
Zone B

Compute for all block centers

X=R((P"(P):

Q

¥y = R cos o(\ - KQ) ;
D=l/x2+y2+Ha;
o

c = 5.

n 2ﬂQ§ 2 9

. L X

m Ean o 9 8
°z=213:1)3'q"

o)

g is the area of the block,



Zone C can be treated either like Zone B or like Zone D,

Zone D

If many points are to be computed then the following computations need
not be performed for all points. In this case it is sufficient to

compute the effect of Zone D for a few points only and interpolate

between these,
Compute ;
(-1)
¥ = cos  [sin % sin @ + cos y CO8 ® cos (x - XQ)] ,

g i - A
ot l)[coecpe sin ¢ - sin @ cos @ cos (A _Q).] ;

a= cos @ sin (A - AQ)
R
t'R+H"

D-_-Vl-ztcoa‘l'lri’?.;

0, H <200 kn

t9(1-t%) . q, H > 200 km
kn

3

m 2nd®

(¢}
1
-

Q
]

#in ¥cosa+q,

a
0 Eﬂ%ain'fsina’q.

Q
1]

4, .For the substation Q considered compute by summation over all

blocks 1 ¢




mo o, omi
5 =% .
I T
1

For elevations < 5 km we have to add, to Sm and to 82, the terms

Aﬁm and A&z, respectively:

b D,+a ©2H (-1) ab

As = . — 4n - — tan
e FD, )’
a D;+b 2H (-1) ab .-
_ .r & eyl b
£o, =8 - [ _ g - tan ml]’

where 2a,2b are the sides of the central 5'X 5' block and

D, = J/a%+ b+ H°;

Ag,- A Ag.- A
ay = glua g3 , ag - gzhb 24 .

These formulas for a; and ag are valid for the central substation O
(Fig. 8.2); for the other substations they are to be modified in an

evident way.

5. DNow denoting by x,y,z the coordinates in the geocentric system
defined on p. 2 (z-axis = axis of rotation of the earth) compute the

components of the gravity disturbance in this system by
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(o4
1t

-~-cos@cos A +d - sinpwcos A8 - sin ) ¢ B,
n m 4

o
1t

-~-cos9sin )\ +d - singsinA 8 +cos A b,
n m 2

(o4
]

- sin ¢ - Sn + cos @ ° Gm.

These components Sx, Gy’ Sz are positive away from the earth's center;

v,A refer to the substation Q .

6. This procedure must be repeated for all substations and the values
of Sx, §y, Sz for the station P are interpolated.
For elevations H > 70 km, it is in general sufficient to use the

central substation O only and to put the values at P equal to the

values at O ,

7. Computation of the components of the gravity vector:

g, =", -8

x x’

gx, gy, gz; y&, yy, yz are positive toward the earth's center.
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